If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90=9x^2
We move all terms to the left:
90-(9x^2)=0
a = -9; b = 0; c = +90;
Δ = b2-4ac
Δ = 02-4·(-9)·90
Δ = 3240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3240}=\sqrt{324*10}=\sqrt{324}*\sqrt{10}=18\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{10}}{2*-9}=\frac{0-18\sqrt{10}}{-18} =-\frac{18\sqrt{10}}{-18} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{10}}{2*-9}=\frac{0+18\sqrt{10}}{-18} =\frac{18\sqrt{10}}{-18} =\frac{\sqrt{10}}{-1} $
| 7x^2-14x−1=0 | | 6x+8-5x=7 | | 9p+4.4=8p+1.4 | | 15+6x=2x+4 | | 9x-9+x+13+x=180 | | 6(x-4)/3=2(x+7)/5 | | 7x^2-14x-1=0 | | 5-5x=-8x+5 | | 7x+25=10x+6 | | 6y+32=38 | | 3y+10=30 | | 3/8x=1/3x+3 | | 32x+42=80 | | 4x+3=-1/2 | | 6y-40=360 | | 35+15y=55 | | 6-2(6x+1)=3x-2(2x+9) | | -3(8p+3)-2(2-23p)-3(5+7p)=0 | | 2x+27=-x-(x-3) | | (11x)/(10)+2=(9x)/(8) | | X*x+1=129 | | 12k^2=-6 | | (X-20)+(x-10)=180 | | 4(x+3)+5=8x-4(x-6) | | x+x+(x+5)=223.44 | | 10x^2-28x-902=0 | | 3(x+6)-4=6(x+3)-13 | | (1/625)^-2m=1/25 | | t3+8=11 | | 15x-8-7x+3=0 | | 36=7t-11t | | -111=a |